Translation Memory - A Primer
Ronan Martin Apr09


the early days
In the early days, translation was done on "hard copy". The source text was available on paper. A translator could then take this and produce a translated version, the target text, also on paper.

When personal computers arrived in the late eighties translators began to incorporate these as an aid to producing the target text. The source text was still nearly always made available as hard copy, but now the translator typed a translation into a text processing application like WordPerfect, or Word. This made editing and correcting the target text much easier, and multiple printed versions could be produced.

It also became possible to store the target texts in electronic form. In many business domains and organizations it is normal to re-work and produce updated versions of documents that have a corresponding translated version. This could be a major re-write, but can just as easily be the production of a revised version where only keywords like product names are changed.

Translators often found themselves being asked to translate documents, and discovering that they had translations of anything up to 90% of the text in a stored version of a previous document they had already translated and billed. In these golden days of translation, clients expected to be, and accepted being billed once more for the document in full. There was no easy way to determine how much work the translator had to do, and whether the work involved copy/paste, search/replace of text, or actual translation.
In lucky cases there were whole pages of source text that were identical to the previously translated version, and the target text for these sections could just be retrieved in its entirety. In unlucky cases the new document was speckled with small changes, and it was almost easier to forget the old version and just translate the whole thing again. But then there was the added headache that clients would complain that you had translated a phrase differently in relation to the previously translated version of their document. So, you had to continually check and cross-check as you translated.
Given this background, it was only a question of time before specialized text-translation applications were to appear. By now most documents started life on the computer, and this made it possible to work directly with source text in electronic form.

document segmentation

Translation applications utilize a dual-window approach: one window for the source text, one for the target text. To keep track of where you are in the document, the application creates markers that tie sections of the text in the source window to the corresponding section in the target window. At the start of a translation the target window displays a duplicate of the source text, so both windows display an identical document.

Tying sections together is done by a process of segmentation. In its simplest form, the sentence is used as a segment unit. The application is given some basic rules so that it knows how to find the beginning and end of a sentence, and it places a segment marker at these points. Now, sentence (or segment) 1 in the source window is paired with sentence (or segment) 1 in the target window. Both windows are synchronized in such a way that if you place the cursor (click the mouse) somewhere in segment 324 in the source-language window, the target-language window also scrolls down to segment 324 and the cursor is placed at the same point when you switch the focus to this window.
Other forms of segmentation rule can be used, depending on the type of text. But the principle is the same. The whole document is duplicated into a target window, and then segmented into a set of segment pairs, source/target, based on a set of segmentation rules.

When you translate, you work on the target-language window, and overwrite the English text. Afterwards you can mark that segment as translated, or translated pending a proof-read, or whatever. When you are finished the translation, you have a set of segment pairs where one side of the pair is in the source language, and the other side of the pair is in the target language.

translation memory - TM

When you have delivered your translation, you are left with the segment pairs. They can be read into a data base, and in principle it really doesn't matter that they become re-arranged in a random sequence. If you pick a source language segment, it will always be tied to a corresponding target language segment that is the translation of it.

Having a database of segment pairs is very useful. If you are given a revised version of a document, or maybe even a completely new document, you can use the database of segment pairs, or "language pairs" as they are also called, to see if there are any sentences that you have translated before. If there are, you can just "roll on" your target-language segment and "hey presto!", the segment is auto-translated for you.

This database of language pairs is known as Translation Memory (TM). Tools that exploit this method are know as translation memory tools, or CAT tools (Computer Assisted Translation tools).
Over the past decade and a half, translation memory tools have become increasingly advanced. Not only do they check for previously translated segments, but they also look for close matches, so that if the sentence is 90% similar to a sentence you have translated before, a "fuzzy match" is suggested, or automatically inserted with a flag to the translator. Translators can set the application to accept a chosen threshold of match.
Translation memory tools produce statistics that inform the translator and client about how much text has really changed since the last time the document was translated. In addition to this there are a large number of features like glossary integration, advanced search, cross-checking (also called concordance search), and text protection as described in the following.

code protection
In the very early days of publishing, a target document had to be created more or less from scratch. Illustrative plates from the original text could be re-used, but the text itself had to be reset by the printer. Proof-readers and editors used a markup language in the margins of documents that told printers which typeface, style, size etc to use. This had to be written again on the translated document.
In the early sixties IBM created a machine markup language, and later SGML was developed on the basis of this. SGML was a forerunner of HTML. When PCs became available WordPerfect and other word-processing products used a similar approach. Users could view the text on the screen, but were also able to select an option that made the markup code visible as tags around certain words.

This now made it possible to produce a target text by translating everything in between the markup tags. When the translation was finished, it was possible to produce a translated version that had the same formatting as the original. But it also meant that a document was now more than just the text that appeared to the end-reader. It consisted of readable text and code.
In reality it could be a nightmare for translators because it was very easy to delete tag markers by mistake, and this often resulted in a document that was not displayable. Tags had to be re-inserted manually. The same applies to early translations of HTML. Using a text editor, you could carefully translate inside the tags, but a web programmer had to clean up the text afterwards and re-insert deleted or corrupted tags.

As translation memory technology evolved, applications were also able to tackle difficulties related to code or tagging. They contained functionality that enabled translators (or language engineers) to protect certain parts of the document so that they would not be accidentally edited, namely the markup code.

Around this time software applications themselves exploded in number and geographical distribution, and needed to be produced in languages other than those of the manufacturers. If normal documents with layout were readable text peppered with markup code, the source text of a program screen is program code peppered with readable text. Many software manufacturers developed in-house applications that could present the translatable parts of the program to translators, while protecting the program code (which was also a kind of text).
These days, translation memory tools can be used to translate many kinds of software application file, and protection of the code is a task that needs to be set up and maintained by a language engineer. This is achieved using some kind of filter functionality. Standard file formats have pre-defined filters that are packaged with the tool. Non-standard file types can have filters created for them by the translator/engineer as needed.
localization

Software programs also need to be changed in other ways to accommodate the target language. Text boxes have to be enlarged, panels moved or tweaked, different font sets invoked.

And both text documents and software programs contain images, and sometimes these have text in them that needs to be translated. This work involves the use of a graphic image editor.

So, translation has become a great deal more than just the production of target-language text. The term "localization" is intended to express this multi-faceted aspect of the translation process. A software program is "localized" rather than just translated. We have localizers, a localization industry, localization engineers, etc. Translation is one task among a set of tasks that needs to be done in order for the software to run in another language environment.

The software localization industry more than anyone benefits from translation memory. It is not unusual to release new version numbers of software with only code changes. The translation memory tool can take the new files and automatically translate the readable text so that a localized version can be created and released at the same time as the original.

